Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 18(3): e1009817, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35239648

RESUMO

Protein-protein interactions (PPIs) are ubiquitous biomolecular processes that are central to virtually all aspects of cellular function. Identifying small molecules that modulate specific disease-related PPIs is a strategy with enormous promise for drug discovery. The design of drugs to disrupt PPIs is challenging, however, because many potential drug-binding sites at PPI interfaces are "cryptic": When unoccupied by a ligand, cryptic sites are often flat and featureless, and thus not readily recognizable in crystal structures, with the geometric and chemical characteristics of typical small-molecule binding sites only emerging upon ligand binding. The rational design of small molecules to inhibit specific PPIs would benefit from a better understanding of how such molecules bind at PPI interfaces. To this end, we have conducted unbiased, all-atom MD simulations of the binding of four small-molecule inhibitors (SP4206 and three SP4206 analogs) to interleukin 2 (IL2)-which performs its function by forming a PPI with its receptor-without incorporating any prior structural information about the ligands' binding. In multiple binding events, a small molecule settled into a stable binding pose at the PPI interface of IL2, resulting in a protein-small-molecule binding site and pose virtually identical to that observed in an existing crystal structure of the IL2-SP4206 complex. Binding of the small molecule stabilized the IL2 binding groove, which when the small molecule was not bound emerged only transiently and incompletely. Moreover, free energy perturbation (FEP) calculations successfully distinguished between the native and non-native IL2-small-molecule binding poses found in the simulations, suggesting that binding simulations in combination with FEP may provide an effective tool for identifying cryptic binding sites and determining the binding poses of small molecules designed to disrupt PPI interfaces by binding to such sites.


Assuntos
Descoberta de Drogas , Interleucina-2 , Sítios de Ligação , Interleucina-2/química , Interleucina-2/metabolismo , Ligantes , Ligação Proteica
2.
Science ; 373(6554): 535-541, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34326235

RESUMO

Interkingdom competition occurs between hymenopteran parasitoids and insect viruses sharing the same insect hosts. It has been assumed that parasitoid larvae die with the death of the infected host or as result of competition for host resources. Here we describe a gene family, parasitoid killing factor (pkf), that encodes proteins toxic to parasitoids of the Microgastrinae group and determines parasitism success. Pkfs are found in several entomopathogenic DNA virus families and in some lepidopteran genomes. We provide evidence of equivalent and specific toxicity against endoparasites for PKFs found in entomopoxvirus, ascovirus, baculovirus, and Lepidoptera through a mechanism that elicits apoptosis in the cells of susceptible parasitoids. This highlights the evolutionary arms race between parasitoids, viruses, and their insect hosts.


Assuntos
Entomopoxvirinae/fisiologia , Proteínas de Insetos/toxicidade , Lepidópteros/parasitologia , Lepidópteros/virologia , Proteínas Virais/toxicidade , Vespas/fisiologia , Animais , Apoptose , Evolução Biológica , Transferência Genética Horizontal , Genoma de Inseto , Interações Hospedeiro-Parasita , Proteínas de Insetos/química , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Vírus de Insetos/fisiologia , Larva/genética , Larva/parasitologia , Larva/virologia , Lepidópteros/genética , Lepidópteros/metabolismo , Nucleopoliedrovírus/fisiologia , Spodoptera/genética , Spodoptera/metabolismo , Spodoptera/parasitologia , Spodoptera/virologia , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo , Vespas/crescimento & desenvolvimento
3.
Proc Natl Acad Sci U S A ; 116(19): 9390-9399, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31019091

RESUMO

Bruton's tyrosine kinase (Btk) is critical for B cell proliferation and activation, and the development of Btk inhibitors is a vigorously pursued strategy for the treatment of various B cell malignancies. A detailed mechanistic understanding of Btk activation has, however, been lacking. Here, inspired by a previous suggestion that Btk activation might depend on dimerization of its lipid-binding PH-TH module on the cell membrane, we performed long-timescale molecular dynamics simulations of membrane-bound PH-TH modules and observed that they dimerized into a single predominant conformation. We found that the phospholipid PIP3 stabilized the dimer allosterically by binding at multiple sites, and that the effects of PH-TH mutations on dimer stability were consistent with their known effects on Btk activity. Taken together, our simulation results strongly suggest that PIP3-mediated dimerization of Btk at the cell membrane is a critical step in Btk activation.


Assuntos
Tirosina Quinase da Agamaglobulinemia/química , Tirosina Quinase da Agamaglobulinemia/metabolismo , Membrana Celular/enzimologia , Tirosina Quinase da Agamaglobulinemia/genética , Sítios de Ligação , Membrana Celular/química , Membrana Celular/genética , Dimerização , Ativação Enzimática , Humanos , Simulação de Dinâmica Molecular , Mutação , Fosfatidilinositóis/química , Fosfatidilinositóis/metabolismo , Fosforilação
4.
Nat Commun ; 9(1): 4325, 2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30337523

RESUMO

Our current understanding of epidermal growth factor receptor (EGFR) autoinhibition is based on X-ray structural data of monomer and dimer receptor fragments and does not explain how mutations achieve ligand-independent phosphorylation. Using a repertoire of imaging technologies and simulations we reveal an extracellular head-to-head interaction through which ligand-free receptor polymer chains of various lengths assemble. The architecture of the head-to-head interaction prevents kinase-mediated dimerisation. The latter, afforded by mutation or intracellular treatments, splits the autoinhibited head-to-head polymers to form stalk-to-stalk flexible non-extended dimers structurally coupled across the plasma membrane to active asymmetric tyrosine kinase dimers, and extended dimers coupled to inactive symmetric kinase dimers. Contrary to the previously proposed main autoinhibitory function of the inactive symmetric kinase dimer, our data suggest that only dysregulated species bear populations of symmetric and asymmetric kinase dimers that coexist in equilibrium at the plasma membrane under the modulation of the C-terminal domain.


Assuntos
Receptores ErbB/antagonistas & inibidores , Receptores ErbB/química , Multimerização Proteica , Animais , Células CHO , Membrana Celular/metabolismo , Cricetinae , Cricetulus , Matriz Extracelular/metabolismo , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Ligantes , Modelos Biológicos , Modelos Moleculares , Fotodegradação , Polímeros/química , Domínios Proteicos , Proteínas Quinases/química , Proteínas Quinases/metabolismo
5.
J Gen Virol ; 99(4): 574-584, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29517480

RESUMO

The family Ascoviridae is a recently described virus family whose members are transmitted by parasitoids and cause chronic and lethal infections in lepidopteran insects. Little is known about the biology and ecology of ascoviruses, and few isolates have been found outside the United States. We report here the isolation of a new ascovirus variant from Spodoptera litura in Japan. Full genome sequence and phylogenetic analyses showed that this virus was closely related to variants in Heliothis virescens ascovirus-3a, and it was named HvAV-3j. HvAV-3j has a DNA genome of 191 718 bp, with 189 putative ORFs and a GC content of 45.6 %, and is highly similar to HvAV-3h, which was isolated in China. In a field survey, the endoparasitoid Meteorus pulchricornis caused a high percentage of parasitization in populations of S. litura larvae, and under laboratory conditions M. pulchricornis was able to transmit HvAV-3j from infected to uninfected larvae by oviposition. Meteorus pulchricornis is thus likely to be a major vector for HvAV-3j transmission in Japan. This species is recognized here for the first time as a vector of ascoviruses that parasitizes a range of host species that extends across families.


Assuntos
Ascoviridae/isolamento & purificação , Mariposas/virologia , Spodoptera/virologia , Vespas/virologia , Animais , Ascoviridae/classificação , Ascoviridae/genética , Ascoviridae/fisiologia , Composição de Bases , Feminino , Japão , Larva/virologia , Masculino , Mariposas/parasitologia , Fases de Leitura Aberta , Filogenia , Vespas/fisiologia
6.
PLoS One ; 12(5): e0178258, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28542589

RESUMO

Although transcriptional regulation is fundamental to understanding bacterial physiology, the targets of most bacterial transcription factors are not known. Comparative genomics has been used to identify likely targets of some of these transcription factors, but these predictions typically lack experimental support. Here, we used mutant fitness data, which measures the importance of each gene for a bacterium's growth across many conditions, to test regulatory predictions from RegPrecise, a curated collection of comparative genomics predictions. Because characterized transcription factors often have correlated fitness with one of their targets (either positively or negatively), correlated fitness patterns provide support for the comparative genomics predictions. At a false discovery rate of 3%, we identified significant cofitness for at least one target of 158 TFs in 107 ortholog groups and from 24 bacteria. Thus, high-throughput genetics can be used to identify a high-confidence subset of the sequence-based regulatory predictions.


Assuntos
Bactérias/genética , Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Modelos Genéticos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Aptidão Genética , Sequenciamento de Nucleotídeos em Larga Escala , Mutação , Shewanella/genética , Shewanella/metabolismo
7.
ACS Synth Biol ; 5(6): 471-8, 2016 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-26886161

RESUMO

We describe here the Genotype Specification Language (GSL), a language that facilitates the rapid design of large and complex DNA constructs used to engineer genomes. The GSL compiler implements a high-level language based on traditional genetic notation, as well as a set of low-level DNA manipulation primitives. The language allows facile incorporation of parts from a library of cloned DNA constructs and from the "natural" library of parts in fully sequenced and annotated genomes. GSL was designed to engage genetic engineers in their native language while providing a framework for higher level abstract tooling. To this end we define four language levels, Level 0 (literal DNA sequence) through Level 3, with increasing abstraction of part selection and construction paths. GSL targets an intermediate language based on DNA slices that translates efficiently into a wide range of final output formats, such as FASTA and GenBank, and includes formats that specify instructions and materials such as oligonucleotide primers to allow the physical construction of the GSL designs by individual strain engineers or an automated DNA assembly core facility.


Assuntos
DNA/genética , Engenharia Genética/métodos , Genótipo , Idioma , Software
8.
Nucleic Acids Res ; 43(17): 8502-15, 2015 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-26261213

RESUMO

Small RNAs (sRNAs) are important regulators of gene expression during bacterial stress and pathogenesis. sRNAs act by forming duplexes with mRNAs to alter their translation and degradation. In some bacteria, duplex formation is mediated by the Hfq protein, which can bind the sRNA and mRNA in each pair in a random order. Here we investigate the consequences of this random-order binding and experimentally demonstrate that it can counterintuitively cause high Hfq concentrations to suppress rather than promote sRNA activity in Escherichia coli. As a result, maximum sRNA activity occurs when the Hfq concentration is neither too low nor too high relative to the sRNA and mRNA concentrations ('Hfq set-point'). We further show with models and experiments that random-order binding combined with the formation of a dead-end mRNA-Hfq complex causes high concentrations of an mRNA to inhibit its own duplex formation by sequestering Hfq. In such cases, maximum sRNA activity requires an optimal mRNA concentration ('mRNA set-point') as well as an optimal Hfq concentration. The Hfq and mRNA set-points generate novel regulatory properties that can be harnessed by native and synthetic gene circuits to provide greater control over sRNA activity, generate non-monotonic responses and enhance the robustness of expression.


Assuntos
Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Fator Proteico 1 do Hospedeiro/metabolismo , Pequeno RNA não Traduzido/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Inativação Gênica , Ligação Proteica , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo
9.
Nat Commun ; 5: 4574, 2014 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-25087841

RESUMO

Mechanisms that control cell-to-cell variation in gene expression ('phenotypic variation') can determine a population's growth rate, robustness, adaptability and capacity for complex behaviours. Here we describe a general strategy (termed FABMOS) for tuning the phenotypic variation and mean expression of cell populations by modulating the frequency and bias of stochastic transitions between 'OFF' and 'ON' expression states of a genetic switch. We validated the strategy experimentally using a synthetic fim switch in Escherichia coli. Modulating the frequency of switching can generate a bimodal (low frequency) or a unimodal (high frequency) population distribution with the same mean expression. Modulating the bias as well as the frequency of switching can generate a spectrum of bimodal and unimodal distributions with the same mean expression. This remarkable control over phenotypic variation, which cannot be easily achieved with standard gene regulatory mechanisms, has many potential applications for synthetic biology, engineered microbial ecosystems and experimental evolution.


Assuntos
Escherichia coli/genética , Fímbrias Bacterianas/genética , Regulação Bacteriana da Expressão Gênica , Genes Reguladores , Modelos Genéticos , Simulação por Computador , Escherichia coli/metabolismo , Fímbrias Bacterianas/metabolismo , Genótipo , Fenótipo , Processos Estocásticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...